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1 Introduction 

An impedance  camera  [Henderson  and  Webster,  1978;  Dines  and  Lytle, 19811 - or what is 
now more  commonly  called  electrical  impedance  tomography - attempts  to image the electrical 
impedance (or just  the  conductivity)  distribution inside a body using electrical  measurements 
on its boundary. The  method has been used successfully in both biomedical  [Brown, 1983; 
Barber  and Brown, 1986; J. C. Newell, D. G. Gisser, and D. Isaacson,  1988;  Webster, 19901 and 
geophysical  applications [Wexler, Fry, and Neurnan,  1985; Daily, Lin, and Buscheck, 19871, but 
the analysis of optimal  reconstruction  algorithms is still  progressing  [Murai and Kagawa, 1985; 
Wexler, Fry, and Neurnan,  1985; Kohn and Vogelius, 1987; Yorkey and  Webster, 1987; Yorkey, 
Webster,  and  Tompkins, 1987; Berryman  and  Kohn,  1990;  Kohn  and  McKenney,  1990;  Santosa 
and Vogelius, 1990; Yorkey, 19901. The most  common  application  is  monitoring the influx or 
efflux of a highly  conducting fluid (such as brine  in a porous  rock or blood  in the  human  body) 
through  the volume  being  imaged. For biomedical  applications,  this  met  hod  does  not  have  the 
resolution of radiological methods,  but it is comparatively  safe  and  inexpensive  and  therefore 
provides  a  valuable alternative when continuous  monitoring of a patient or process  is  desired. 

The following discussion is intended  first t o  summarize  the physics of electrical  impedance 
tomography,  then to  provide a few details of.the  data analysis and  forward modeling  require- 
ments,  and f indy   t o  outline some of the  reconstruction  algorithms  that  have proven to  be  most 
useful  in  practice. Pointers to  the  literature  are provided throughout  this brief narrative  and 
the  reader is encouraged to explore the references for more  complete  discussions of the various 
issues  raised here. 

2 Electrical Impedance Tomography 

First, we review some facts  about  this problem that play an  important role in the analysis that 
follows. Recall that  the electrical power dissipated into  heat is  [Jackson, 19621 

... 

where the  current J and electric field E are  related to  the electrical potential @ by 

J(5) = q(Z)E(Z), 

E($) = -V@(Z), 

and  the  current  distribution is also  divergence  free 
. .  I 

away from all current sources. The remaining quantity  appearing  in  the  constitutive  equation 
(2) is the isotropic  conductivity 0 whose values are to be determined as a function of the position 
5. Substituting (2) and (3) into (4) gives Poisson’s equation 

v * (ova) = 0. - (5) 



Substituting (3) into (1) and using (4), we have 

Then,  the divergence theorem shows that 

where ii is a unit  outward  normal vector  and dS is the infinitesimal  surface area on the boundary. 
If current is injected through metallic  electrodes, the  potential  takes a constant value @k on 
the  kth electrode of surface area S k .  If there  are K electrodes, then (7) becomes 

where 

is the  total current  injected (Ik > 0) or  withdrawn ( I k  < 0) a t  the kth electrode. Since these 
are  the only  sources and sinks, we also have the sumrule 

If there  are only two  injection  electrodes, then (8 )  reduces to 

so the power is the  product of the measured potential difference A@ across the injection elec- 
trodes  and  the  injected  current I .  

Reciprocity 

Now suppose that  two experiments  have been performed on the  same body. Let @ and JQ = 
-uV@ be the  potential  and  current  distribution for one  experiment and !P and J,p = -oV* 
be those for the other experiment.  Then, using the divergence theorem we have 

Since both  current  distributions  are divergence free  inside the body, we conclude that  the two 
boundary  integrals  satisfy 



which is a general  statement of reciprocity for Poisson's equation. 
The practical  implications of (13) may  be seen by again  supposing that  the current is injected 

or withdrawn at  metallic  electrodes so the  potential is constant  (to a good  approximation)  on 
the  k-th electrode of surface area S k .  If the current is injected/withdrawn at  electrodes q and 
q' for G and at electrodes T and r' for q, then 

and (13) reduces to 

From (16) it follows that  the transfer  impedance satisfies 

Equation (17) is probably the most common statement of the principle of reciprocity. 

consequence of the sei€-adjoint property of the linear operator (5). 
The reader  should verify that  this  property of solutions of Poisson's equation  is a direct 

Boundary data 

The  data for  electrical  impedance  tomography  have most often  been  gathered by injecting a 
measured  current  between  two  electrodes while' simultaneously  measuring the voltage differences 
between  pairs of other electrodes placed around  the  boundary of the body  being  imaged.  This 
process is then  repeated, injecting  current between all possible (generally adjacent) pairs of 
electrodes, and recording the set of voltage differences for each  injection  pair i. This  data 
set  has  normally not included the voltage difference across the injection  electrodes,  because 
these  voltages  cannot  be  measured as reliably. A substantial  contact  impedance develops at  the 
interface between the body  and the injection  electrodes when large  currents  are  present.  This 
problem  can be reduced by using large electrodes or small currents. We assume that voltage 
differences (and  therefore  the powers dissipated)  across the injection  electrodes are known, but 
it is not necessary that  they  be known to high accuracy. 

Feasibility constraints 

Dirichlet's principle states  that, given a conductivity  distribution a(?) and a potential  distri- 
bution @(Z), the power dissipation pi realized for a specified surface potential configuration is 
the one that minimizes the integral J alV@I2 d3x so that 



The  trial  potential field for the  ith injection  pair is @i(Z), while the particular  potential field 
that actually minimizes the  the power is @! (Z), and  this  one also satisfies Poisson’s equation 
V- (aV@r)  = 0 within the body. Furthermore, if the effective power dissipation  associated  with 
the  trial  potential @;(Z) is defined as 

then  the  measured powers P; must  satisfy 

if o*(Z) is the  true conductivity  distribution.  Note that if  we vary the  trial power dissipation 
(19)  with  respect tu  the  trial potential, we find 

2 oV@ - V6Q d3x = -2 V * (uV@)S@ d3x = 0 J J 
at a stationary  point. We integrated once by parts to obtain  (21); the surface  integral vanishes 
since b@ is  constrained to  vanish on the boundary. Since the volume variation 6@ is arbitrary, 
its coefficient inside the integral  must vanish, so Poisson’s equation is recovered, as expected. 

To see that  an analogy  can  be developed between seismic traveltime  tomography  [Lytle 
and Dines, 1980; Berryman, 1989; 19901 and electrical. impedance  tomography, consider the 
following set of correspondences: 

s(Z) -+ O(.’>, 

Then  the analysis of convex functionals  and feasibility sets previously presented  for seismic 
traveltime  tomography [Berryman, 19911 carries over directly to  the electrical  impedance to- 
mography problem formulated  this way. 

The feasibility constraints for electrical  impedance  tomography now take  the  form 

2 P, 
where bT = (01 , . . . , on), pT = (PI ,  . . . , Pm), and the E-squared matrix is given by 



so called because the electric field is given  by -V@, and therefore (23) is the integral of the 
square of the electric field in cell j for current  injection  experiment i. Least-squares  methods 
may  be  applied to  this problem  in much the  same fashion as  in  traveltime  tomography [Kallman 
and  Berryman, 19921. 

One other  feature of the electrical  impedance  tomography  problem not  shared by the seismic 
tomography  problem  should  be  mentioned to emphasize the richness of this  subject. So far 
we have discussed only Dirichlet’s principle (18). In  fact,  there  are  two  distinct  variational 
principles for the conductivity problem: Dirichlet’s principle and  its  dual, known as Thomson’s 
principle. The second variational principle takes  the  form 

where J;(Z) is a trial  current  distribution vector  for the  ith  current injection  configuration 
that satisfies the continuity  equation V Ji = ‘0, and  has  the correct current  distribution on the 
boundary. The trial  current  distribution Ji(Z) and  the  gradient of the  trial  potential V@i(Z) are 
generally  unrelated  except that, when the minimum of both  variational functionals  is attained, 
then JT(.’) = -aV@t(Z). Of course, this  condition is a restatement of the constitutive  equation 
wherein the  current equals the conductivity  times the electric field. 

The existence of dual variational principles is a general property whenever the  primal vari- 
ational principle is a true minimum principle. Fermat’s  principle  is  only a stationary  (not a 
minimum)  principle, and so traveltime  tomography  does  not possess this  dual  property. The 
existence of the  dual  variational principles for electrical  impedance  tomography is important 
because it  means  there  are two independent  sets of feasibility constraints for the conductivity 
model ~ ( 2 ) .  These  two  sets of constraints also allow us (in  some  sense) to  obtain  upper  and 
lower bounds on the region of the conductivity  model  space that contains the solution to  the 
inversion problem. See Berryman  and  Kohn [I9901 for more discussion of this  point. 

3 Finding Nodal Potentials 

When doing  forward  modeling  in  electrical  impedance  tomography, we assume that  the  input 
nodal  currents  and  admittance  matrix  are known and  that  the  nodal potentials need to be 
determined. The  admittance  matrix is singular, so some  trick  must  be  introduced to solve for 
the potential. Two methods discussed here  are: (J) the generalized inverse and (2) introduction 
of a reference node, allowing reduction of the  matrix to one of full rank.  Both  methods we 
computationally viable. The generalized inverse has the  advantage  that  it  may  be applied 
without  restriction to  any problem. The reference node  approach is very simple to apply, but 
has a few (generally minor)  restrictions on its use. Both  methods  are discussed in  some  detail. 

3.1 The Admittance Matrix and the Cross-power Matrix 

Iterative  methods for salving the inversion problem start by solving the forward  problem 

Y@i = I;, 

where Y is the  admittance  matrix  [Mitra, 1969; Brown, 19853 of the discretized problem for 
some  assumed  conductivity  distribution 0,  & is the  input  current vector for the  i-th injection 



experiment,  and &i is the vector of potential values at the nodes. For a finite element model 
with Q nodes and n elements,  these  Q-vectors take  the form 

= ( @;,I . . . @i,Q ) ^T (26) 

and 

Assuming there  are m current injection  experiments in the  test  suite, we may form the voltage 
matrix 

V = ( i ,  ... 4,) 

and  the  current  matrix 

e = ( &  ... im). 
Then, it follows directly from (25) that 

VTYV = V T C  F rr, 

where the cross-power matrix is defined by (30) and given explicitly by 

The cross-power matrix  may  be usefully defined and studied  for  any choice of current  injection 
scheme. The  matrix  gets  its  name from the  fact  that  the  diagonal  terms are the powers Pi = 
&TI;, while the off-diagonal terms have the dimensions of power. 

The cross-power matrix is very important for the inversion problem,  because it contains all 
the  data we can  measure. We will discuss the cross-power matrix in more detail  after  analyzing 
the  spectrum of the  admittance  matrix. 

3.2 Impedance Matrices 

The generalized inverse  [Penrose, 1955a; 1955bl of the admittance  matrix is dso known as the 
impedance  matrix 2 = Yt,  which therefore satisfies 

where I is the Q X Q identity  matrix.  In  terms pf the impedance matrix, the  potential vector 
is given by 



Therefore, the  experimental voltage matrix is  given (non-uniquely) by 

v = zc + const X wwT. (34) 

Then,  the cross-power matrix is given either by (30) or by the equivalent  expression 

n G V T C  = CTZC.  (35) 

To emphasize the physical character of the cross-power matrix, we rewrite  it  as 

Reciprocity  shows that  the cross-power matrix is symmetric. 
It follows easily from (35) that  the cross-power matrix II is closely related to  the  transfer- 

impedance matrix T. For a nearest-neighbor  excitation  scheme  (unit  current  injected  and 
withdrawn  in  sequence  from  pairs of adjacent  electrodes), 

In fact, except  for  their 
T is just a special  case 
scheme. 

T = _  (37) 

differing units  (resistance  versus  power), the transfer-impedance  matrix 
of the cross-power matrix for this  particular choice of current  injection 

3.3 Reference Node and Matrix Reduction 

The singularity of the  admittance  matrix is caused by the  fact  that  any  constant  potential 
added to a potential vector does not  change the  resulting  current vector. This undesirable 
feature of the  admittance  matrix can be eliminated by choosing a reference  node and reducing 
the  matrix by one row and column. The reference  node is chosen to  be at  ground  potential, say 
as 0. Then, none of the  products Yq,@, = 0 contributes to  the  current vector and we may as 
well take Yq, + 0 for q # e .  The sum along row s must  still give Cq, YSqtaqt = Is .  If it happens 
that Is 0, then we may also take Ys,, 0 for q' # s and Yss 1. These  replacements 
guarantee  that as = 0, but do not affect the physics of the  computation in  any  other way. 
Since inaccessible  nodes always satisfy  current  conservation (so Is = 0 ) ,  we can use this trick to 
remove the  singularity problem  in  general by chosing s to be  any  interior  node, i .e. ,  any  node 
that is never used for current injection or withdrawal. Since there is no coupling  between  node 
s and  any other node (since all the off-diagonal terms now vanish), we can just  eliminate row s 
and column s from the  matrix  and proceed to  invert  the resulting (Q - I) X (Q - 1) nonsingular 
matrix. 



The procedure  just  outlined  can  be used most efficiently if the finite element representation 
is chosen for convenience so the final node in the node  list is always interior.  Then, the choice 
s = Q simply  eliminates the  last node and therefore the  last row and column of the  admittance 
matrix. 

4 Nonlinear Reconstruct ion Algorit hrns 

In this  section, we restrict discussion to nonlinear  reconstruction  algorithms. Such algorithms 
are iterative  in  character,  Starting  from  an  initial guess at  the conductivity  model, a method is 
sought to  update the conductivity in a way that creates a steady improvement in the agreement 
between the predicted and measured data.  The main issues in such algorithms  are  stability  and 
speed of convergence. Uniqueness of the final solution is also an issue, but  the reader  is  referred 
to  the section  on ghosts for a thorough discussion of that topic. 

4.1 Kohn-Vogelius-Wexler Schemes 

The first class of algorithms to be discussed we  will call the Kohn-Vogelius-Wexler (KVW) 
schemes. Wexler, Fry, and Neuman [ 19851 presented the first of these schemes. Kohn  and 
Vogelius [1986] presented a variant of the Wexler scheme that is much easier to analyze in light 
of the feasibility constraints.  Furthermore, Yorkey, Webster, and Tompkins [1987] showed that 
the results from these  two schemes are  virtually  indistinguishable. We therefore  lump the two 
schemes and some  additional  variants  into the same  category. We will treat  the Kohn and 
Vogelius algorithm first. 

4.1.1 Algorithm of Kohn and Vogelius 

Kohn and Vogelius [1986] begin by defining an error  functional 

The  constraints  on  the  components of the integrand  are that  the  trial current  distribution for 
the  i-th current  injection  experiment Ji must  be divergence free (V - Ji = 0) except at  the 
injection and  withdrawal nodes and  the scalar potential field &(Z) must  be continuous and 
satisfy appropriate  boundary conditions. Since the full solution to  the problem  must  satisfy 
Ji = -oV& €or Ji and #i satisfying the same  pair of admissibility conditions; since this  equality 
can only be achieved at  a solution,  the  error  functional (38) will remain positive unless a solution 
has been attained. An iterative  method  that successively decreases this  error  functional  subject 
to  the admissibility  conditions  may  be  expected to  converge to a solution. 

Expanding the  integrand of (38) and using the divergence theorem, we find that 

where we used the fact that pi = - 1 &Ji iida follows from the admissibility boundary condi- 
tions. The  advantage of the Kohn-Vogelius approach becomes apparent when we consider th.at 



Thornson’s variational principle shows that 
L 

while Dirichlet ’s principle shows that 

Thus,  the  absolute minimum (&KT, = 0) of the error functional is achieved only when the 
integrals  for  both  variational principles reach  their  minima  for all m experimental  configurations. 

A reconstruction  algorithm may be  built  around the observation that  the error  functional 
can  be forced to decrease  monotonically a t  each  stage  in  an  iteration scheme by noting that the 
values of the conductivity in the various cells producing the minimum error are  determined by 

It follows that  the  updated values of cell conductivity after an iteration  step  are 

The algorithm  proceeds  this way: 

1. Given input  currents,  compute  trial  current  distributions J; for each  injection  experiment. 

2. Given measured output voltages, compute  trial  scalar  potentials & for ,each  injection 
experiment  based on the  latest  estimate of the conductivity  distribution a(5). 

3. Update  the conductivity in the  j- th cell  by finding the minimum of EKV according to 
(43). 

I .  

4. Repeat  this  process  until a convergence criterion has been met,  or  until some fixed number 
of iterations  has been  performed. 

4.1.2 Algorithm of Wexler 

Wexler et al. [1985] begin by defining the error functional 

The admissibility  conditions  on J; and & are the same as for  Kohn and Vogelius (V - Ji = 0, 
#i continuous, and  both satisfying appropriate  boundary conditions). The main diffierence 
between this functional and  that of Kohn and Vogelius is that, when the  integrand is expanded, 
the result 



has  no  specid physical interpretation  and  cannot  be simplified further. 
A monotonic  decrease  in the error  functional EW can  be forced by noting that 

The  updating rules (43) and (47) are similar but  not identical. 

Voeglius except that in the  update  step  the formula (43) is repaced by (47). 
Wexler's algorithm for reconstructing  the  conductivity is the  same  as  that for Kohn and 

4.1.3 Related algorithms 

A variant of the KVW schemes arises by considering the error functional 

where aT = ( a l ,  . . . , a,) is an m-vector of constants a;. The absolute  minimum of (48) occurs 
when the bracketed  expression in the integrand vanishes everywhere, which requires that J; = 
-0Vq5; and a; = 1 for all i = 1 - m. For arbitrary  trial  current  distributions  and  potentials,  the 
minimum of (48) is achieved by varying with  respect to  the ais. Then, we find the minimum 
occurs when 

J olV#;12 d32 'a = Jo-11J;12 d3x* 

Substituting (49) back into (48), the error  functional becomes 

(49) 

We recognize now that  the error  functional ES makes use of the Schwartz  inequality €or integrals. 
Furthermore, like the Kohn and Vogelius functional  and  the Wexler functional, the absolute 
minimum of this error functional is achieved only when Ji = --oV#; for all i. 

Minimizing (50) with respect to  the conductivity oj in  the  j-th cell as before, we find that 
the  updated aj s are given by 

The  major difference between (51) and  the updat.es of Kohn and Vogelius or Wexler is that uj 
is only defined implicitly by (51), since the conductivity appears  on  the  right  hand side of the 
equation inside the integrals.  Thus, (51) is an implicit formula for the  updated conductivities. 
In  contrast,  the  updates (43) and (47) are  actually  independent of the conductivity and therefore 
provide explicit formulas. 



4.2 Yorkey’s Output Least-squares Method 

The simplest output least-squares  method for electrical  impedance  tomography  takes the opti- 
mization  function to be 

m 

f(&) = $ W i ; t (  rIi2l - nii, ( 4  ) 2 , (52) 
;,it  

where the weights W;;t are generally chosen to be  either  one or zero - depending  on  whether 
the  data  are available or not. For example,  in the common  nearest-neighbor  excitation scheme, 
those  terms involving injection  electrodes have generally not been available so Wii = Wii+1 = 
Wii-1 = 0, etc.  Equation (52) is the  functional used by Yorkey and Webster [I9871 and Yorkey, 
Webster,  and Tompkins [ 19871. 

The minimum of (52) is found when 

for ad elements 1 5 j 5 n. To make use of this  equation in updating  the conductivity, consider 
the Taylor expansion of given by 

where we have introduced  the  notation 

Retaining  only the first order terms  in bok ,  (53).may then be rearranged  approximately as 

where It is evaluated at  d o ) .  Equations (56) are  approximate normal equations  for the least- 
squares  minimization  problem  associated  with (52). 

To solve for the model  corrections 6&, we must first  evaluate the Jacobian  derivative I I ; ~ J , ~ .  

Recalling that 

and  noting that  the  input current  vector is not a function of the model  conductivities, we find 
that 

Multiplying on the left by 8; gives 



where we have  used the fact that  the stiffness matrix k(j) = O Y / 8 O j .  Equation (59) has 
the  important  advantage  that  it provides a simple means of evaluating the Jacobian  without 
requiring  any  numerical  derivatives. Nevertheless, the formula  is not  trivial to evaluate since it 
depends implicitly on 6 through &i, where 6i solves (57) for  some t? and f i *  

An important  practical  detail for implementation of inversion algorithms  should  be  stressed 
now, in  light of (59). Reciprocity  guarantees both  that Hiit = I I i l i  and also that II.;i/,j = IIiri,j, 
so we might think  it  should  be possible to avoid doing some of the computations  from (57) €or 
the nodal  potentials. However, the potential  vector 6; must  be  computed  for  every  electrode 
excitation  vector Ii to  take advantage of formula (59). Thus, complete  sets40f  reciprocal data 
are required by the  output least-squares inversion method, if it is to  be  implemented as a 
Newton-Raphson  iteration scheme. Since it is always good  experimental  practice to  check  how 
well reciprocity is satisfied  for  any  excitation scheme [in  order to  evaluate the linearity  and 
repeatability of the experiment),  this  requirement really costs us nothing. 

Yorkey’s output least-squares  method works very well on synthetic  data with low noise 
content.  Essentially  perfect  reconstructions  can be easily obtained if the noise level is 0.1% 
or less. However, if boundary voltage data with  noise/signal ratio of 1.0% or more and  the 
conductivity contrasts present are large (20% or more), the  iterative  method  tends  to diverge 
after a few iterations. Since the repeatability  tests of reciprocity  measurements  has  been  shown 
to have  accuracy of about 1.0% for our field data, modifications in the  method  are therefore 
required to improve stability of the reconstruction  algorithm. 

4.3 Modifications Based 011 Feasibility  Constraints 

Contamination of the measurements  due to  the presence of contact  impedance  is the reason 
usually given for  avoiding the use of voltages involving the injection and withdrawal  electrodes 
in the  data set  for  inversion. Such terms  are eliminated in a nearest-neighbor  excitation scheme 
in two-dimensions by setting  the tridiagonal. matrix elements to  zero, e.g., W;i = Wii+l = 
Wii-r = 0. For all other  excitation  patterns  that exclude injection  electrodes, the diagonal 
terms of the  matrix W always vanish, while other elements  may or may  not vanish depending 
on the particular pattern used. 

To make use of feasibility  constraints, we should  have a measurement or an estimate of the 
power dissipation  for  each  excitation pattern  in  our scheme. Furthermore,  it is preferable to 
have as  many of these power measurements as possible; having at  least as many  constraints  as 
unknowns in  the  conductivity model is desirable. The inaccuracy of the power measurements 
may  appear to be an issue, however feasibility constraints  based on comparatively  inaccurate 
power measurements  can  still be used quite effectively. The constraints  are used not to compute 
the direction of the least-squares  model  correction  step,  but  rather to choose the magnitude of 
an underrelaxation  parameter used as a multiplier to re.duce the length of that model  correction 
step  [Berryman  and Kohn, 19901. Thus,  the  constraints  are used only tco prevent the  iteration 
scheme from  producing a sequence of models that wanders  rapidly  away  from the feasibility 
boundary  (whose  location is known approximately from values of the power measurements). 
Since the  data  are assumed to depend  linearly  on  any  measurement errors  and  the  location of 
the .feasibility boundary  depends linearly on the  data, our estimates of this  boundary are also 
linearly  dependent  on the  data error.  Thus, inaccuracies in  the power measurements may be 
seen to have a very small effect on the outcome of the inversion routine at each iteration step. 



The feasibility constraints have been implemented to modify the correction step in Yorkey’s 
algorithm.  Our  experience  has been that boundary  voltage data with  noise/signal  ratios of 
1.0% for conductivity  models  containing as much as 100% contrast  produce  stable/convergent 
reconstructions, whereas the same code without the  constraints produced  rapidly diverging 
reconst  ructions. 

4.4 Least-squares for Power Measurements 

Extraordinary  measures .may be  taken to produce  accurate  estimates of the power dissipated 
in each  current  injection scheme. For example, the experiment  may  be  repeated  several  times 
at  successively smaller  current  injection levels; then  the  linear  transfer resistance  across the 
injection  electrodes  may  be deduced by extrapolation to zero current level. 

Assuming that  accurate power measurements  become available, we may consider a somewhat 
different least-squares  approach. Now the only data  are  the power measurements. Let the  data 
vector p be the measured power dissipation, an m-vector  such that pT = (PI,. . . ,pm), where 
p ;  is the power dissipation of the  i-th current  injection  configuration. The model conductivity 
n-vector c ? ~  = (01,. . . , on) with oj being the conductivity of the  j- th cell satisfies 

KB = p, (60) 

where K is an rn X n matrix whose matrix elements I ! ; j  are  determined by the square  magnitude 
of the electric field of the  i-th current  injection pattern  through  the  j-th cell of the model ( L e .  
ICij = Jcellj IV@iI2d3x). ‘This  matrix is just  the  E-square  matrix defined previously in (23). In 
general, we do  not have  good a priori approximations to  the  square  magnitude of the electric 
field if the medium is very inhomogeneous. However, for the present  applicatidn, we will assume 
that  the E-square  integral  matrix  has been fixed with a known set of (what  are possibly trial) 
electric field values. 

Once a set of trial E2s and corresponding values of Ii;j = Jcellj IV@;I2d3a: are known, we 
try  to solve (60) €or 6 .  The resulting  model  vector 6 may be underdetermined if m < n or 
overdetermined if rn > n. Finding a “solution)’ to (60) requires the use of a generalized inverse 
which implies a least-squares  estimate of the model  conductivity  vector. A general  objective 
function to be minimized might  have the form suggested by Herman [1980] 

Gp(&) = (p - K6)TWl(p - KB) -+ p(d - 6 b ) T W 2 ( 6  - &), (61) 

where WI and W2 are (respectively) m X m and 7~ X n real, symmetric weight matrices, p is 
some scalar (called the damping  parameter)  determined by the relative  importance of the second 
term  compared to the  first,  and &, is some special  background value of the model  conductivity 
vector to which the final result should be close. 

If II is the cross-power matrix for any  complete  set of measurements, the least-squares 
functional for power measurements satisfies 

(p - Ki?)TW(p - K&) = $ ( l ’ I ; ; t  - lI$))W;;~;p(II~p - II;:)). 
2 ; l P  

For a complete data  set,  both  the  estimated  and  measured powers may  be  found  in  terms of a 
definite  set of coefficients {q+} related to  the  input current by 

&lk = Cak, - (62) 



where 

T ak = (uk; l ,  ak;2, - - - 7 a k ; n ) ,  

and  (from the  admittance  equation YV = C )  to  the  potential by 

ibak = Val,, 

so that 

Thus,  the  measured power is given explicitly by 

and  the predicted power is similarly found to be given by 

where w k k  are  the elements of the diagonal weight matrix W. It is not  hard to show that )'viitilit 

satisfies (??). 
Thus, we see that least-squares for the power measurements is another special case of the 

general output least-squares  method  based  on the functional (??). Since solution of the normal 
equations €or the least-squares  problem  often  requires inversion of a singular or poorly condi- 
tioned  normal  matrix,  the second term in (61) is used to regularize the problem.  Kallman and 
Berryman [1992] have shown that  the resulting  algorithms  for  electrical  impedance  tomography 
are completely  analogous to  the ones that have been shown to  be successful for stablizing seismic 
traveltime  tomography  algorithms  [Berryman, 19901. These  algorithms  have been implemented 
and tested on both  synthetic  and real data.  The  results show that the feasibility constraints do 
stabilize the reconstructions as indicated by the analysis. 

5 Discussion 

We have  concentrated  on  nonlinear inversion algorithms  based on the output least-squares 
approach.  Among  other nonlinear  reconstruction  methods that deserve mention  here are those 
of Wexler, Fry, and Neuman [1985], Kohn and Vogelius [1987], Kohn and McKenney [1990], 
and Santosa  and Vogelius [1990]. Spatial  constraints prevent a detailed  analysis of all these 
methods, so we limit discussion to  the method of Kohn and Vogelius. 

Beginning with the  constitutive relation 

Ji = -a(Z)V@ i 



which must  be  satisfied by the  true solution for every experimental  current  injection pattern i ,  
Kohn and Vogelius [1987] consider the  error  functional 

The constraints  on  the  components of the integrand  are  that  the  trial  current  distribution for 
the  i-th current  injection  experiment J; must  be divergence free (V * J; = 0) except at the 
injection and  withdrawal  nodes while the scalar potential @;(Z) must  be continuous and satisfy 
appropriate  boundary conditions. The error  functional will be  positive unless a solution of the 
inversion problem has been  found,  in which case the functional vanishes identically. To see the 
significance of this  limiting value, we may expand  the  integrand of (70) and use the divergence 
theorem to  show that 

where the admissibility  boundary  conditions guarantee  that pi = - J @;Ji iida. In essence, 
Kohn and Vogelius E19871 minimize the average of the power estimates using both  the Dirichlet 
and  Thomson  variational  integrals. Generally, both power integrals  do  not  simultaneously 
satisfy the feasibility constraints. However, (71) shows that  the average of the two  integrals is 
bounded below by the  true power. Furthermore, by minimizing the SUM with  respect to the 
conductivity value in all the cells, the two integrals  take the  same value at  the minimum (the 
reader  can easily verify this)  and therefore at  ' the end of each iteration  step Kohn and Vogelius 
[1987] have  found a conductivity lying in the  dual feasibility region for the  data. 

In the language of either linear or nonlinear  programming  [Fiacco and McCormick, 19901, 
functional  minimization  algorithms are  either  interior or exterior  methods  depending  on  whether 
the  iterates  remain inside or outside the feasible set.  Methods  producing  iterates always ly- 
ing on the feasibility boundary are also  interior  methods. Mixed methods may  have iterates 
that  alternate between the interior  and  exterior of the feasible set. The main  point of contrast 
between the  method of Kohn and Vogelius and  the  output  least-squares  algorithms discussed 
earlier is that, whereas the least-squares  methods  may be shown to be  exterior  methods [Berry- 
man, 19911, algorithms  such  as  Kohn  and Vogelius 119871 are  interior  methods (or they would 
be if all the power data were always available). An  analysis of *the feasibility  constraints shows 
that  both types of algorithms attempt  to converge to a solution on the feasibility boundary, 
but  the  output least-squares  methods converge from  outside the feasible set, while these  other 
methods generally converge from inside the feasible set.  There  are significant advantages to  
both techniques, notably  the exterior  methods  may achieve convergence quickly but  can  be sub- 
ject to  instabilities  induced by data errors if an insufficient number of constraints is available 
while the interior  methods  are insensitive to  data error  and  therefore very stable  but  are  often 
slowly converging. 
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